Mechanical Behaviour of Materials

PII. Crystal plasticity (1): Slip-Induced Deformation

Prof. Dr.-Ing. 郭瑞昭

- **PII. Crystal plasticity:**
- (1) Plastic deformation and dislocations
- (2) Twin
- (3) Yielding
- (4) Simulations

Prof. Dr.-Ing. 郭瑞昭

- 1. Plastic Deformation and Dislocations
- 2. Schmid's factor and Taylor factor
- 3. Lattice rotation

Key points of slip

The first response is called elastic (see Figure) and corresponds to an unequivocal relationship between stress and strain. As previously seen for crystalline materials, in the limit of small strains, this relation is linear according to Hooke's law. The elastic stage corresponds to a distortion of the atomic bonds and is entirely reversible. This stage is followed by a deformation stage, called "anelastic", for which no permanent strain exists after unloading.

In addition, the transition between elastic, anelastic and plastic stages is generally very gradual, so that the critical stress for macroplasticity is often conventionally defined at a given plastic strain, typically 2×10^{-3} .

Different deformation stages of a crystalline material

AFM images of slip step pattern around indentations in (1 0 0)

Surface relief during plastic deformation

It is clearly observed that plastic deformation is accompanied by the appearance of lines. These lines, together with the surface relief, suggest that plastic deformation occurs by the shearing of the sample along planes, with large regions that have slipped past each other (see figure).

Cited from D. Rodney and J. Bonneville, ch06, (2015)

Surface relief during plastic deformation-cont.

Slip systems in FCC metals

Pencil glide in an BCC Crystal

Slip systems in HCP metals

		preferred		$\langle a \rangle$ basal	$\langle a \rangle$ prism	
metal	c/a ratio	slip system	purity	CRSS (MPa)	CRSS (MPa)	
Cd	1.886	$\langle a \rangle$ basal	99.996	0.2		
Zn	1.856	$\langle a \rangle$ basal	99.999	0.2		
ideal	1.633			hard sphere model		
Mg	1.624	$\langle a \rangle$ basal	99.996	0.8		
Со	1.623	$\langle a \rangle$ basal				
Re	1.615	$\langle a \rangle$ basal		9.0	16.5	
Zr	1.593	$\langle a \rangle$ prism	99.98	>24	6.4	
Ti	1.588	$\langle a \rangle$ prism	99.95	92	23.5	
Ru	1.582	$\langle a \rangle$ prism	99.92		20.6	
Hf	1.581	$\langle a \rangle$ prism	98.6		20	
Ве	1.568	$\langle a \rangle$ basal	99.	2.3	14.7	

T.B. Britton, F.P.E. Dunne, A.J. Wilkinson. Proc. R. Soc. A 471 (2015) 20140881.

Slip plane in terms of c/a ratio in HCP metals

Schmid's law: slip begins when the shear stress on a slip system reaches a critical value c^{c} , called the critical resolved shear stress.

$$\tau_{ns} = \pm \tau_c$$

In tensor (index) form: $\tau = b_i \sigma_{ij} n_j$

Schmid's Law

Schmid factor for FCC metals

Stress-strain curves for polycrystalline and single crystal Al

Schmid factor for BCC metals on <111>-pencil glides

P.G. Partirdge, The crystallography and deformation modes of hexagonal close-packed metals, metal Review, 1967:12:169

CRSS of basal and prismatic slips in hcp crystals

CRSS of basal and prismatic slips in hcp crystals

Lattice rotation during Tension

Representation of the tensile axis using orientation triangle

Representation of the tensile axis using orientation triangle

fcc

Lattice rotation in Tension for fcc and bcc metals

fcc

Lattice rotation in Compression for fcc and bcc metals

Crystal structure and	Single crystals: end orientations		Polycrystals: preferred orientation	
slip systems	Tension	Compression	Tension	Compression
fcc $\{111\}<110>$ bcc $<111>$ -pencil glide hcp $(0001)<11\overline{2}0>$ hcp $\{1\overline{1}00)<11\overline{2}0>$ and $\{110\overline{1})<11\overline{2}0>$	<112> <110> <1120> <1010>	<110> <100> & <111> [0001] [0001]	<100> & <111> <110> <1120> <1010>	<110> <100>&<111> [0001] [0001]

Table 8.2. Comparison of theoretical end orientations with preferred orientations

Summary of stable orientations during deformation

$$\begin{split} \varepsilon_{xx} &= m_{xx1}\gamma_1 + m_{xx2}\gamma_2 + m_{xx3}\gamma_3 + \dots + m_{xxj}\gamma_j \\ \varepsilon_{yy} &= m_{yy1}\gamma_1 + m_{yy2}\gamma_2 + m_{yy3}\gamma_3 + \dots + m_{yyj}\gamma_j \\ \varepsilon_{zz} &= m_{zz1}\gamma_1 + m_{zz2}\gamma_2 + m_{zz3}\gamma_3 + \dots + m_{zzj}\gamma_j \\ \gamma_{xy} &= m_{xy1}\gamma_1 + m_{xy2}\gamma_2 + m_{xy3}\gamma_3 + \dots + m_{xyj}\gamma_j \\ \gamma_{yz} &= m_{yz1}\gamma_1 + m_{yz2}\gamma_2 + m_{yz3}\gamma_3 + \dots + m_{yzj}\gamma_j \\ \gamma_{zx} &= m_{zx1}\gamma_1 + m_{zx2}\gamma_2 + m_{zx3}\gamma_3 + \dots + m_{zxj}\gamma_j \end{split}$$

Only five independent equations?

Taylor model

$$\sigma_x d\varepsilon_x = \tau d\gamma$$
$$M = \frac{d\gamma}{d\varepsilon_x} = \frac{\sigma_x}{\tau}$$

M: Taylor factor

What is the difference between M and m?

Taylor factor M for axisymmetric flow from Chin

The selected slip system and thus texture evolution can be predicted by the geometry of shear with respect to the external stress by Schmid's law, applied by Sachs for **single slip**. For **multiple slip** which is able to fulfill the strain compatibility of grains, the Taylor theory predicts the necessary slip systems.

Schmid factor 1/m and Taylor factor M

Schmid factor m and Taylor factor M

1. D.E. Laughlin and K. Hono, "Physical Metallurgy", fifth edition, Elsevier, Amsterdam, Netherlands, 2014.

References