Mechanical Behaviour of Materials

Chapter 04-1

Creep

Dr.-Ing. 郭瑞昭

Alloys for high temperature applications

Figure 16.17. Strength of various alloys at high temperatures. From J. A. van Echo, Short-Time High Temperature Testing, ASM International (1958).

What is Creep?

Creep of materials is classically associated with timedependent plasticity under a fixed stress at an elevated temperature, often greater than roughly 0.5 *Tm*, where Tm is the absolute melting temperature, that is, <u>continuous plastic deformation under constant load or</u> <u>stress</u>.

Creep occurs at some temperature and thus as being thermally activated is associated with diffusion. This may occur either by lattice diffusion or grain-boundary diffusion, or both may be involved.

Creep versus Tension test

<u>Creep</u>: A time-dependent plasticity when subjected to a constant load at a high temperature (> 0.4 Tm). Examples: turbine blades, steam generators.

Creep test: constant Load

Tension: constant strain rate

Phenomenological description: creep curve at constant stress

Primary/transient creep:

slope of strain vs. time decreases with time (workhardening)

Secondary/steady-state creep: rate of straining is constant (balance of workhardening and recovery)

Tertiary: rapidly accelerating strain rate up to failure: formation of internal cracks, voids, grain boundary separation, necking, etc. Phenomenological description: creep curve at constant strainrate

Effects of Stress and Temperature on Creep

The instantaneous strain increases

The steady-state creep rate increases

 \succ The time to rupture decreases

Mechanisms of Creep

Creep mechanisms

- (a) Nabarro-Herring creep
- (b) climb, in which the strain is actually obtained by climb
- (c) climb-assisted glide, in which climb is a mechanism allowing dislocations to bypass obstacles
- (d) thermally activated glide via cross-slip
- (e) Coble creep, involving grain-boundary diffusion
 - Bulk-diffusion-assisted creep: (a)–(d) Grain-boundary diffusion: (e)

At a given temperature T, the thermal equilibrium concentration of vacancies in the crystal is C_0 , where N_v is the equilibrium atomic fraction and b^3 is the atomic volume. The concentration at faces in tension C is higher than that at faces in compression. Vacancies flow from faces in tension to faces in compression and matter flows in the opposite sense.

Definitions of N-H creep

- C_0 the total number of available atomic sites per unit volume
- Q_f the formation energy of vacancies
 - k the Boltzmann constant
- *T* the absolute temperature
- d grain size
- Q_m the activation energy for vacancy migration

Definitions of N-H creep-conti.

- $\Omega = b^3$ the volume of vacancy
 - b^2 the cross-section area exposed to the stress
- $\sigma b^2 \cdot b$ the work done by the stress due to removing an atom
 - C^+ the vacancy concentration at the tensile stress
 - C^- the vacancy concentration at the compression stress
 - b the average jump distance of vacancy

Excess concentration of vacancies

The thermal equilibrium concentration of vacancies C_0 , and the activation energy are expressed from the unstressed values by

$$C_0 = e^{-Q_f/kT}$$

The thermal equilibrium concentration of vacancies at faces AB and BC is respectively by

$$C^{+} = e^{-(Q_{f} - \sigma b^{3})/kT}$$
$$C^{-} = e^{-(Q_{f} + \sigma b^{3})/kT}$$

Fick's first law

The flux of vacancies is given by Fick's equation:

$$J_{V} = -D_{V}\nabla C_{V} = D_{V}\frac{\Delta C}{\Delta x} \qquad D_{V} = D_{0}e^{-Q_{m/kT}}$$

where the distance over which the diffusion occurs is approximated by the grain diameter $\Delta x = d$

$$\Delta C_V = C^+ - C^- = C_0 \left(e^{\frac{\sigma \Omega}{kT}} - e^{\frac{-\sigma \Omega}{kT}} \right) \approx C_0 \cdot \frac{2\sigma \cdot \Omega}{kT}$$
$$\Delta x = d$$

$$D_V \frac{\Delta C_V}{\Delta x} = D_0 e^{-(Q_f + Q_m)/kT} \cdot \frac{2\sigma \cdot \Omega}{d \cdot kT} = D_S \cdot \frac{2\sigma \cdot \Omega}{d \cdot kT}$$

Creep strain rate

$$Q_s = Q_f + Q_m$$

the area of a grain boundary facet A is approximated by d^2 and Q_S is the activation energy for self-diffusion

$$\dot{\varepsilon}_{NH} = \frac{\Delta d}{d} \cdot \frac{1}{\Delta t} = \frac{1}{d^3} \cdot \frac{\Delta d \cdot d^2}{\Delta t} = \frac{1}{d^3} \cdot \frac{\Delta V}{\Delta t}$$
$$\dot{\varepsilon}_{NH} = \frac{1}{d^3} \cdot J_v \cdot d^2 \qquad \qquad J_v \cdot \mathbf{A} = \frac{\Delta V}{\Delta t}$$
$$= D_s \cdot \frac{2\sigma \cdot \Omega}{d^2 \cdot kT} \qquad \qquad J_v = D_s \cdot \frac{2\sigma \cdot \Omega}{d \cdot kT}$$

Summary of N-H creep

Thus, the strain rate is the rate of change of strain:

$$\dot{\varepsilon}_{NH} = \frac{2D_s}{d^2} \cdot \frac{\sigma\Omega}{kT}$$
$$\dot{\varepsilon}_{NH} = A_{NH} \cdot \frac{D_s}{d^2} \cdot \frac{\sigma\Omega}{kT}$$

Note the grain size dependence!

(II) Schematics of Coble creep

 $A = 2\pi R \sin \theta \cdot \delta$

If the top spherical cap surrounding the pole generates

vacancies, then the lower annular section surrounding by the equator supplies an equal number

of atoms at $\theta = 60^{\circ}$.

$$A_{top} = A_{top} = \pi R^2$$

Fick's first law

The average concentration gradient along the path PQ is

$$\frac{\Delta C_V}{\pi R/2} = \frac{0.432}{\pi/2} \cdot \frac{BR}{D_V \delta} = 0.275 \frac{BR}{D_V \delta}$$

The maximum concentration gradient at θ =60°. boundary is

$$\left(\frac{dC_V}{Rd\theta}\right)_{\theta=60^\circ} = \cot 60^\circ \cdot \frac{BR}{D_V\delta} = 0.577 \frac{BR}{D_V\delta}$$

$$N = \frac{\left(\frac{dC_{V}}{Rd\theta}\right)_{\theta=60^{\circ}}}{\Delta C_{V}} = 2.1$$

Maximum flux

The maximum flux at θ =60° boundary is

$$J(vac/s) = D_{V} \left(\frac{dC_{V}}{Rd\theta}\right)_{\theta=60^{\circ}} \cdot 2\pi R\delta \sin 60^{\circ}$$

$$= D_{\rm v} N \frac{\Delta C_{\rm v}}{\pi R/2} \cdot 2\pi R \delta \sin 60^{\circ} = 7.3 D_{\rm v} \delta \cdot \Delta C_{\rm v}$$

```
Coble creep rate
```

$$\dot{\varepsilon}_{Coble} = \frac{1}{\pi R^3} \cdot \left(7.3 D_V \delta \cdot \Delta C_V\right) \Omega$$
$$= 7.3 \frac{D_V \delta}{\pi R^3} \cdot \left(C_o \frac{\sigma \Omega}{kT}\right) \cdot \Omega$$
$$= 7.3 \frac{D_{gb} \delta}{\pi R^3} \cdot \frac{\sigma \Omega}{kT} = 18.6 D_{gb} \frac{\delta}{d^3} \cdot \frac{\sigma \Omega}{kT}$$

the effective grain boundary diffusion coefficient:

the grain size:

the vacancy concentration:

$$D_{gb} = D_V C_o \Omega$$
$$d = 2R$$
$$\Delta C_V = C_0 \cdot \frac{\sigma \cdot \Omega}{kT}$$

Summary of Coble creep

In Coble creep mass transport occurs by diffusion along grain boundaries in a polycrystal.

$$\dot{\varepsilon}_{Coble} = A_{Coble} \cdot D_{gb} \cdot \frac{\delta}{d^3} \cdot \frac{\sigma\Omega}{kT}$$

- $\delta \quad \begin{array}{l} \text{the effective grain} \\ \text{boundary thickness for} \\ \text{mass transport} \end{array}$
- D_{gb} the effective grain boundary diffusivity

Definitions of Power law creep (PLC)

 Ω the volume of vacancy

- *B* the mobility of vacancy
- F the force due to the potential gardient
- v_D the drift velocity of vacancy
- \overline{l} the average spacing between intersection dislocations
- ρ the average mobile dislocation density

(III) Power law creep (PLC) by dislocation climb $\dot{\mathcal{E}}_D$

At "moderate" stresses above about 0.6 T_m , over a wide range of stresses, power-law creep is observed that is widely believed to be dislocation climb-controlled, with the activation energy for creep to be close to that of vacancy diffusion.

Summary of three theories

$$\dot{\varepsilon}_{NH} = A_{NH} \cdot \frac{D_V}{d^2} \cdot \frac{\sigma \cdot \Omega}{kT}$$
Lattice diffusion controlling
$$\dot{\varepsilon}_{Coble} = A_{Coble} \cdot D_{GB} \cdot \frac{\delta}{d^3} \cdot \frac{\sigma \cdot \Omega}{kT}$$
Grain boundary diffusion
controlling

 $D_{\mu} \sigma \cdot \Omega$

$$\dot{\varepsilon}_D = A_D \left(\frac{D_V G b}{kT} \right) \left(\frac{\sigma}{G} \right)^n$$

Dislocation climb controlling

1

Ashby Deformation mechanism map of Ag

A: dislocation glide, B: power law creep, C: Coble creep, D: Nabarro-Herring creep and E: elastic deformation.

Deformation mechanism maps

