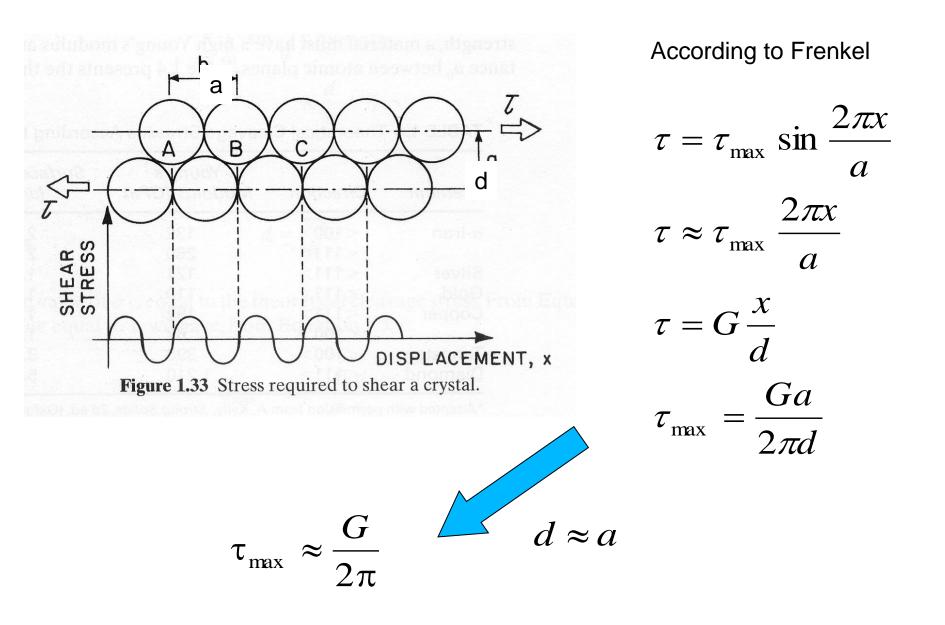
Mechanical Behaviour of Materials

Chapter 05-1 Dislocation: Basics

Dr.-Ing. 郭瑞昭

Theoretical strength of crystals



Is theoretical strength of crystals possible to achieve?

Why are the theoretical cleavage and shear strengths of materials possible to reach?

Metal		Critical shear stress (MPa)		
	Purity %	Experiment	Theory	
copper	>99.9	1.0	414	
silver	99.99	0.6	285	
cadmium	99.996	0.58	207	
iron	99.9	\sim 7.0	740	

Table 9.1. Critical shear stress for slip in several materials

Note: There is considerable scatter caused by experimental variables, particularly purity.

Is theoretical strength of crystals possible to achieve?

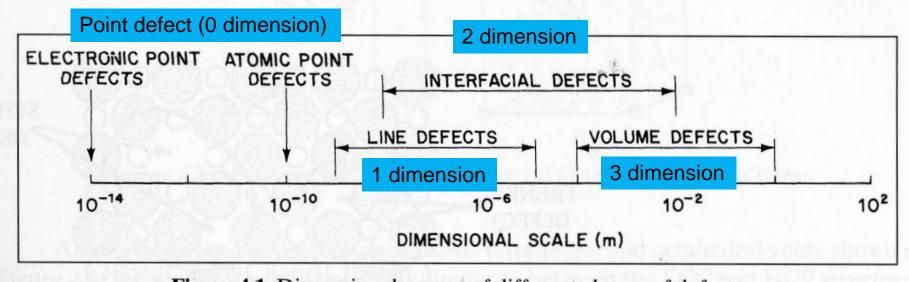


Figure 4.1 Dimensional ranges of different classes of defects.

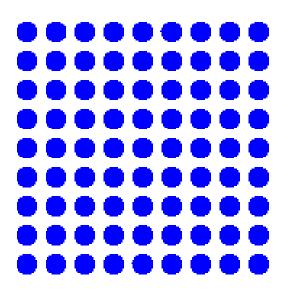
Why are the theoretical cleavage and shear strengths of materials possible to reach?

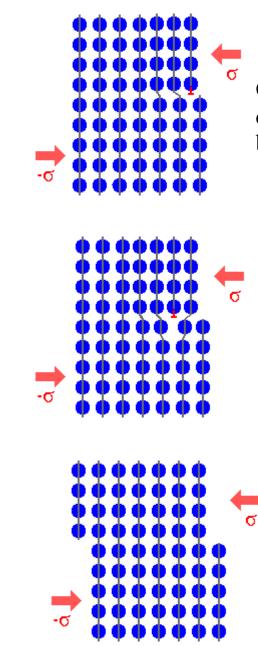
What kind of defects?



Is theoretical strength of crystals possible to achieve?

Dislocation movement and plastic deformation



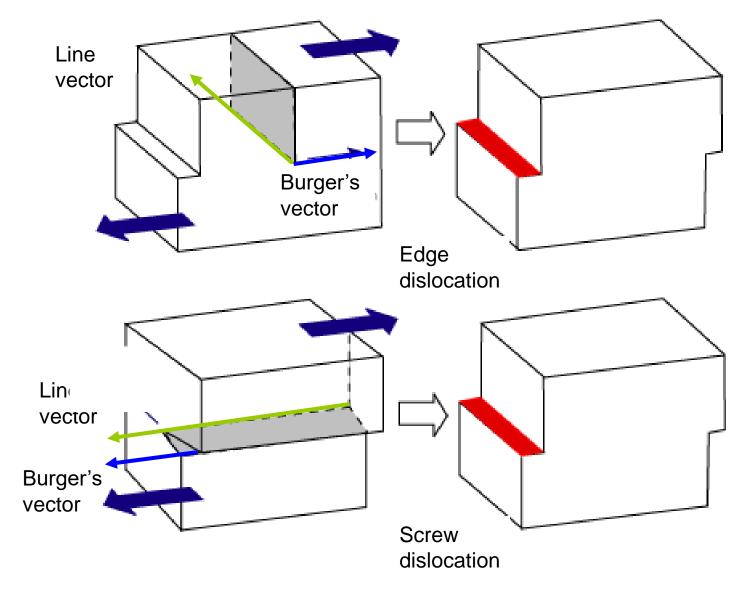


Generation of an edge dislocation by a *shear* stress

Movement of the dislocation through the crystal

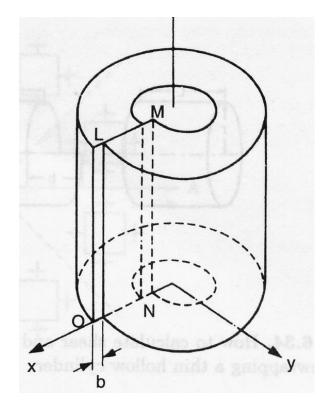
Shift of the upper half of the crystal after the dislocation emerged

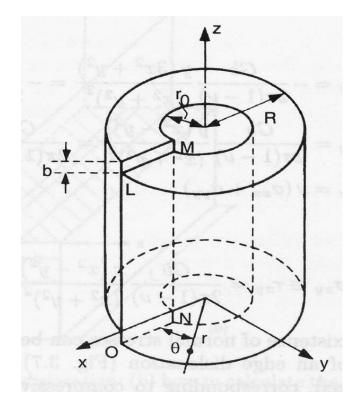
Definition of edge and screw dislocations

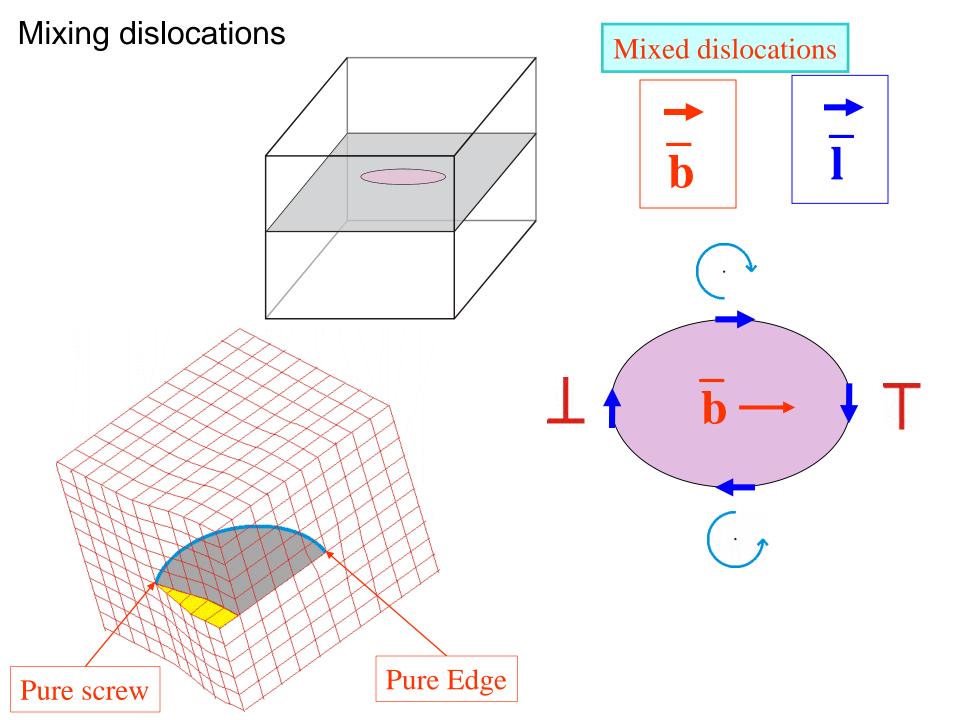


http://www.youtube.com/watch?v=z3MzDiyLtWc&feature=endscreen

Definition of edge and screw dislocations







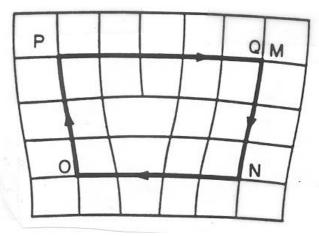
Summary

	Type of dislocation		
Dislocation Property	Edge	Screw	
Relation between dislocation line (l) and b	<u> </u>		
Slip direction	to b	to b	
Direction of dislocation line movement relative to b		Ţ	
Process by which dislocation may leave slip plane	climb	Cross-slip	

What is Burgers vector?

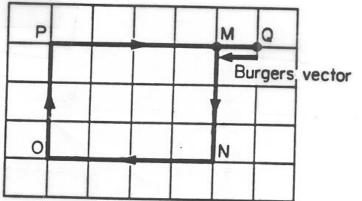
To determine the Burgers vector of a dislocation in a two-dimensional primitive square lattice, proceed as follows:

Trace around the end of the dislocation plane to form a closed loop. Record the number of lattice vectors travelled along each side of the loop (shown here by the numbers in the boxes):



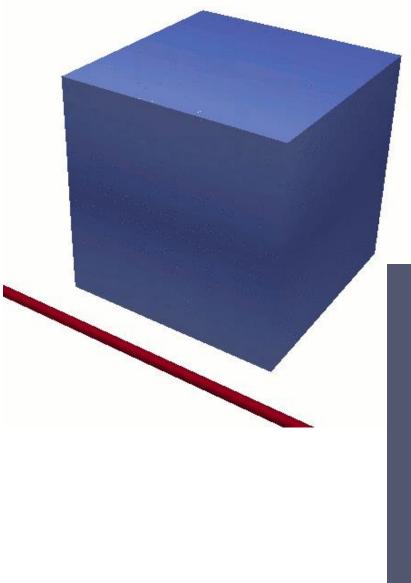
In a perfect lattice, trace out the same path, moving the same number of lattice vectors along each direction as before. This loop will not be complete, and the closure failure is the Burgers vector:

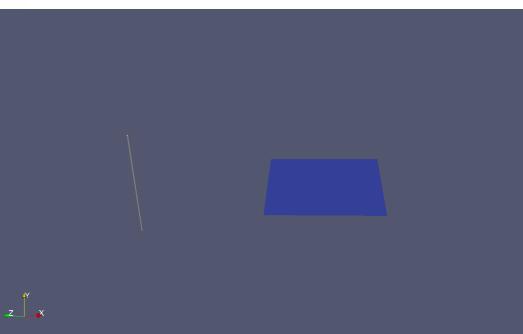
RHFS: Right Hand Finish to Start convention



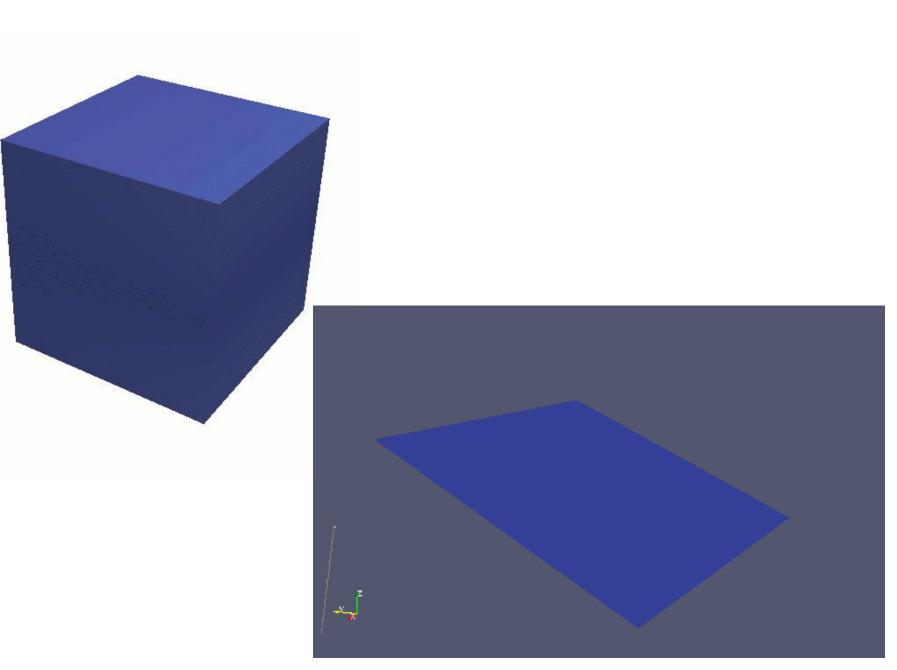
Home work: Burgers vector for fcc, bcc and hcp

Movement of edge dislocation



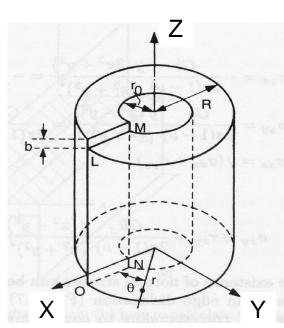


Movement of screw dislocation



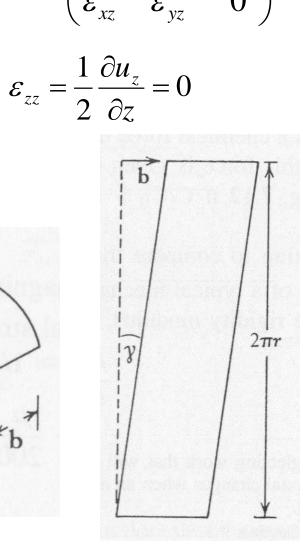
$\frac{\partial \tan^{-1} \frac{y}{x}}{\partial x} \quad \text{and} \quad \frac{\partial \tan^{-1} \frac{y}{x}}{\partial y}$ Home work: Differentiation of $\frac{\partial \tan^{-1} \frac{y}{x}}{\partial x} = \frac{-\frac{y}{x^2}}{1 + \left(\frac{y}{x}\right)^2}$ $\frac{\partial \tan^{-1} \frac{y}{x}}{\partial y} = \frac{\frac{1}{x}}{1 + \left(\frac{y}{x}\right)^2}$

Stress field of a screw dislocation



$$u_{z} = \frac{\theta}{2\pi} b = \frac{b}{2\pi} \tan^{-1} \frac{y}{x} \qquad \varepsilon_{ij} = \begin{pmatrix} 0 & 0 & \varepsilon_{xz} \\ 0 & 0 & \varepsilon_{yz} \\ \varepsilon_{xz} & \varepsilon_{yz} & 0 \end{pmatrix}$$
$$\varepsilon_{ij} = \frac{1}{2} \left(\frac{\partial u_{i}}{\partial x_{j}} + \frac{\partial u_{j}}{\partial x_{i}} \right) \qquad \varepsilon_{zz} = \frac{1}{2} \frac{\partial u_{z}}{\partial z} = 0$$
$$\varepsilon_{xx} = \varepsilon_{yy} = \varepsilon_{xy} = 0$$

*b



$$u_x = u = 0$$

$$u_y = v = 0$$

 $u_z = w \neq 0$

Stress fiel

b-4 Х

 $u_x = 0$ $u_y = 0$ $u_z \neq 0$

d of a screw dislocation

$$u_{z} = \frac{\theta}{2\pi} b = \frac{b}{2\pi} \tan^{-1} \frac{y}{x}$$

$$\sigma_{ij} = \begin{pmatrix} 0 & 0 & \sigma_{xz} \\ 0 & 0 & \sigma_{yz} \\ \sigma_{xz} & \sigma_{yz} & 0 \end{pmatrix}$$

$$\varepsilon_{ij} = \frac{1}{2} \left(\frac{\partial u_{i}}{\partial x_{j}} + \frac{\partial u_{j}}{\partial x_{i}} \right)$$

$$\varepsilon_{xx} = \varepsilon_{yy} = \varepsilon_{xy} = 0$$

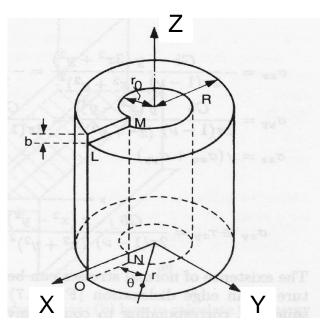
$$\varepsilon_{yz} = \frac{1}{2} \frac{\partial u_{z}}{\partial y} = \frac{bx}{4\pi(x^{2} + y^{2})}$$

$$\sigma_{yz} = \frac{Gbx}{2\pi(x^{2} + y^{2})}$$

$$\varepsilon_{xz} = \frac{1}{2} \frac{\partial u_{z}}{\partial x} = -\frac{by}{4\pi(x^{2} + y^{2})}$$

$$\varepsilon_{zz} = \frac{1}{2} \frac{\partial u_{z}}{\partial z} = 0$$

Stress field of a screw dislocation

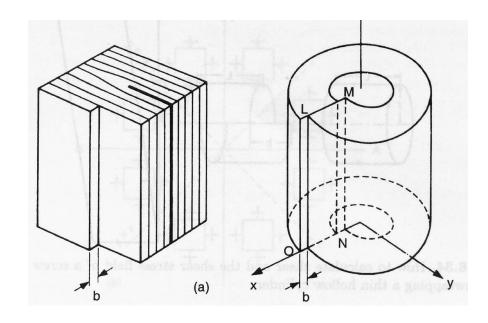


$$\sigma_{ij} = \begin{pmatrix} 0 & 0 & \sigma_{xz} \\ 0 & 0 & \sigma_{yz} \\ \sigma_{xz} & \sigma_{yz} & 0 \end{pmatrix}$$

$$\sigma_{yz} = \frac{Gbx}{2\pi(x^2 + y^2)} = \frac{Gb}{2\pi} \frac{\cos\theta}{r}$$

$$\sigma_{xz} = \frac{Gby}{2\pi(x^2 + y^2)} = \frac{Gb}{2\pi} \frac{\sin\theta}{r}$$

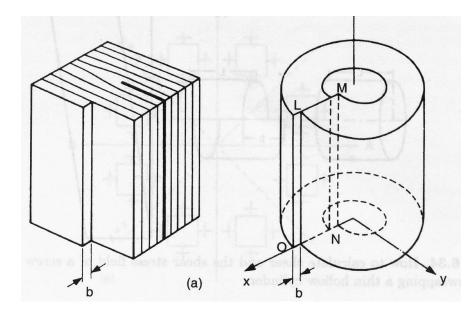
Stress field of a edge dislocation



$$\sigma_{ij} = \begin{pmatrix} \sigma_{xx} & \tau_{xy} & 0 \\ \tau_{xy} & \sigma_{yy} & 0 \\ 0 & 0 & \sigma_{zz} \end{pmatrix}$$

$$u_{x} = \frac{b}{2\pi} \left[\tan^{-1} \frac{y}{x} + \frac{1}{2(1-\nu)} \cdot \frac{xy}{x^{2} + y^{2}} \right] = \frac{b}{2\pi} \left[\theta + \frac{\sin^{2} \theta}{4(1-\nu)} \right]$$
$$u_{y} = \frac{-b}{8\pi(1-\nu)} \left[(1-2\nu) \log \left(x^{2} + y^{2}\right) + \frac{x^{2} - y^{2}}{x^{2} + y^{2}} \right] = \frac{-b}{2\pi} \left[\frac{1-2\nu}{2(1-\nu)} \ln r + \frac{\cos 2\theta}{4(1-2\nu)} \right]$$
$$u_{z} = 0$$

Stress field of a edge dislocation



$$\sigma_{xx} = -\frac{Gb}{2\pi(1-\nu)} \frac{y(3x^2+y^2)}{(x^2+y^2)^2}$$
$$\sigma_{yy} = \frac{Gb}{2\pi(1-\nu)} \frac{y(x^2-y^2)}{(x^2+y^2)^2}$$
$$\sigma_{zz} = \nu(\sigma_{xx}+\sigma_{yy})$$

$$\sigma_{ij} = \begin{pmatrix} \sigma_{xx} & \sigma_{xy} & 0 \\ \sigma_{xy} & \sigma_{yy} & 0 \\ 0 & 0 & \sigma_{zz} \end{pmatrix}$$

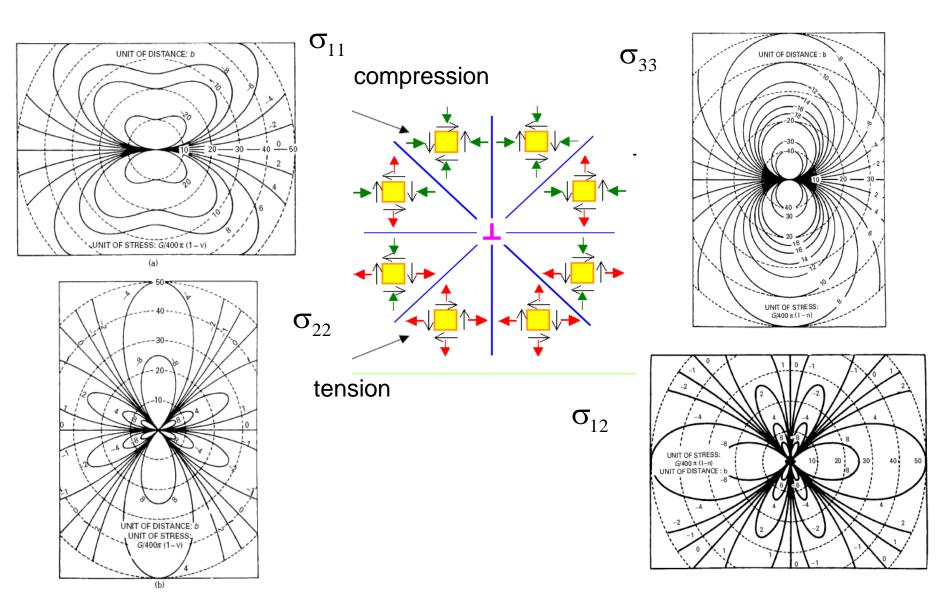
 $\sigma_{xy} = \sigma_{yx}$ $=\frac{Gb}{2\pi(1-\upsilon)}\frac{x(x^2-y^2)}{(x^2+y^2)^2}$

Stress field of a edge dislocation

$$\sigma_{xx} = -\frac{Gb}{2\pi(1-\upsilon)} \frac{\sin\theta(2+\cos2\theta)}{r}$$
$$\sigma_{yy} = \frac{Gb}{2\pi(1-\upsilon)} \frac{\sin\theta\cos2\theta}{r}$$
$$\sigma_{zz} = \upsilon(\sigma_{xx} + \sigma_{yy})$$

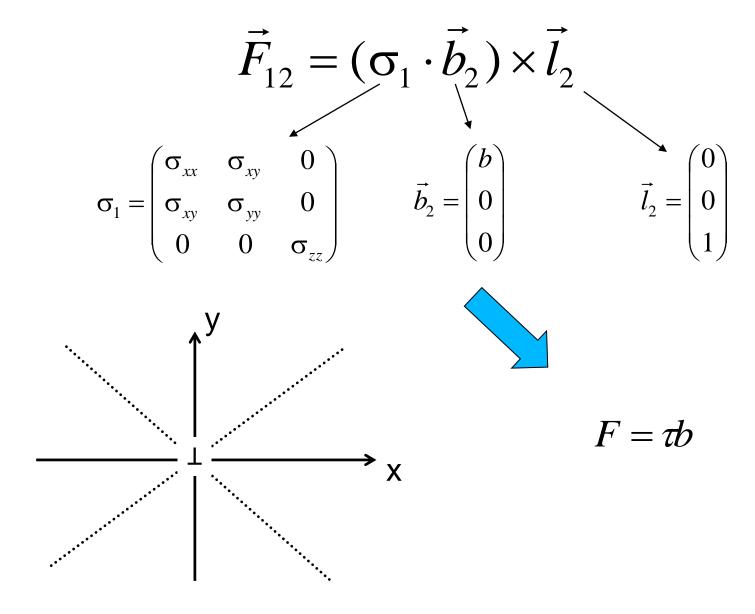
$$\sigma_{xy} = \frac{Gb}{2\pi(1-\upsilon)} \frac{\cos\theta\cos2\theta}{r}$$

Stress Fields Around a Edge Dislocation

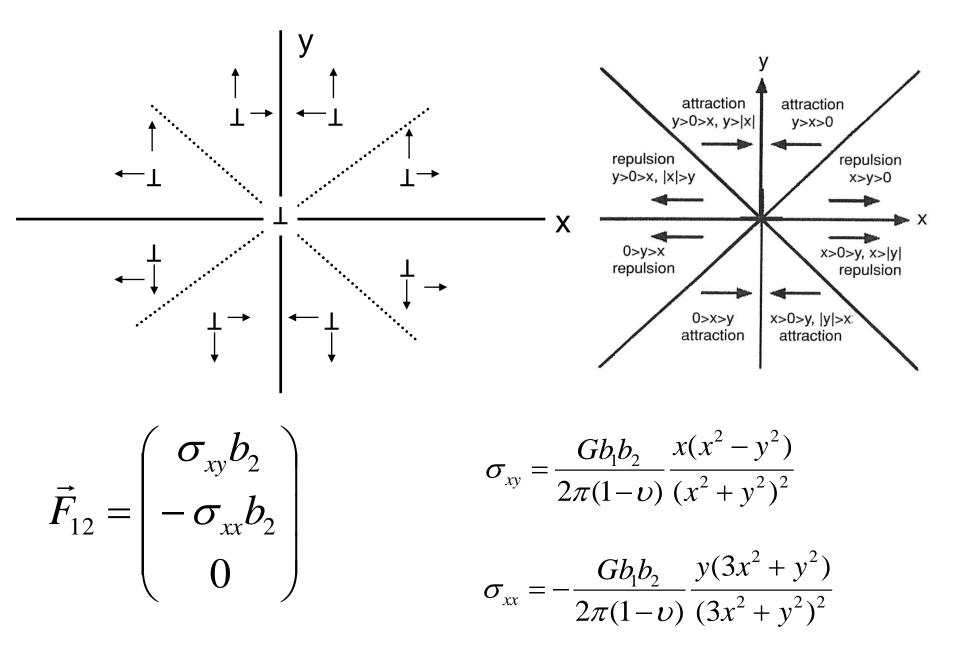


(c)

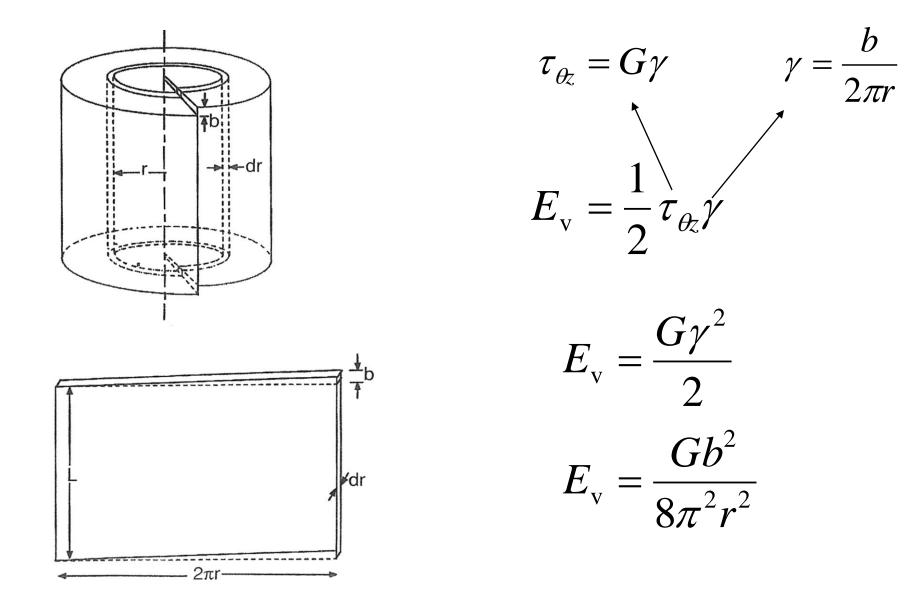
Forces on dislocations: Peach-Koehler equation



Forces on dislocations: Peach-Koehler equation



Energy of screw dislocation



Energy of screw dislocation

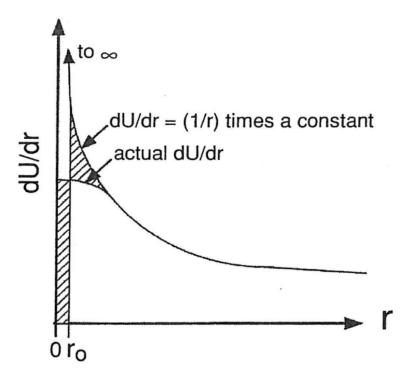
 $E_{\text{screw}} = \int_0^{2\pi} \int_{r_0}^r \frac{Gb^2}{8\pi^2 r^2} \cdot r dr d\theta \cdot l$ $= l \cdot \frac{Gb^2}{4\pi} \ln\left(\frac{r}{r_0}\right)$

$$\frac{E_{\rm dis}}{l} \approx \frac{1}{2}Gb^2$$

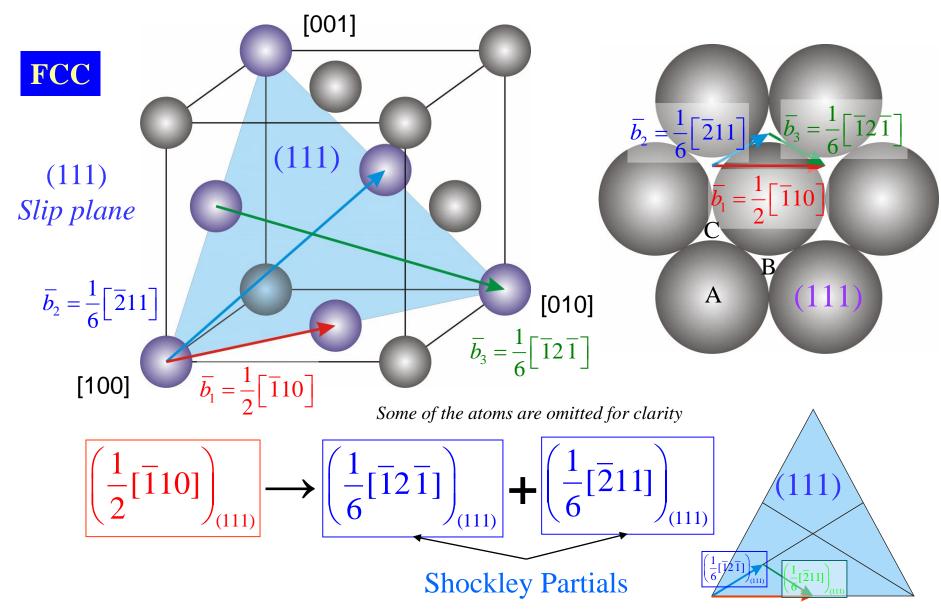
The strain energy per unit length in order to obtain minimum energy, that is, to posse a line tension analogous the surface tension.

$$\frac{E_{screw}}{l} = \frac{Gb^2}{4\pi} \ln\left(\frac{r}{r_0}\right)$$

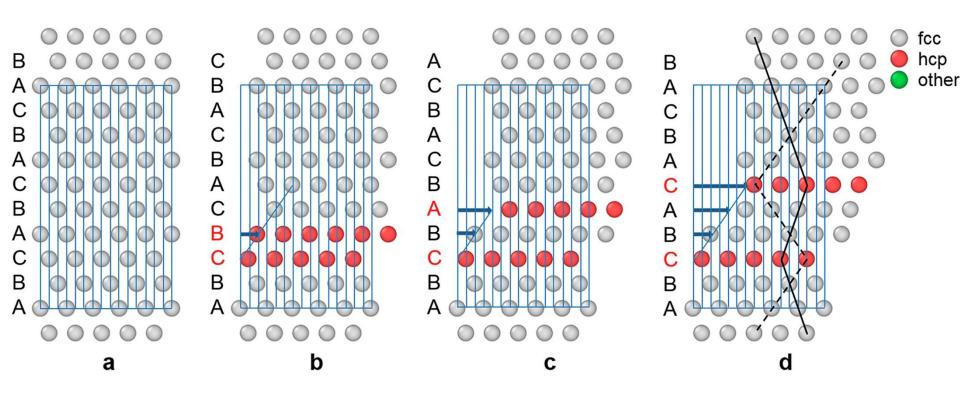
$$\frac{E_{edge}}{l} = \frac{Gb^2}{4\pi(1-\nu)} \ln\left(\frac{r}{r_0}\right)$$



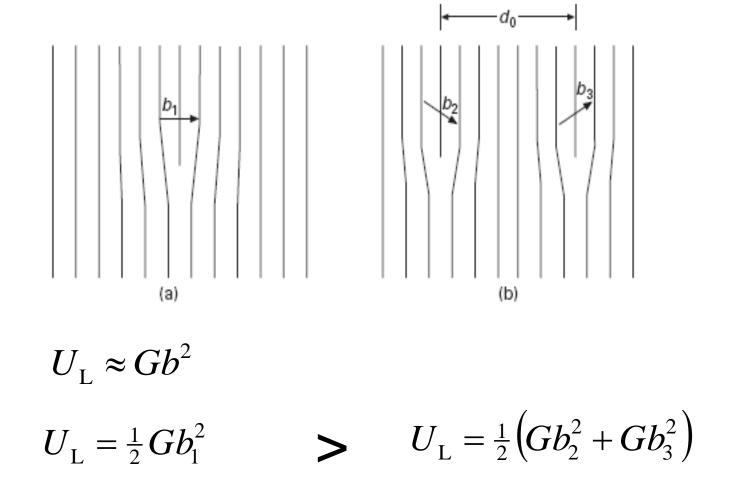
Partial dislocations in fcc



Dislocations and Stacking faults



Partial dislocations

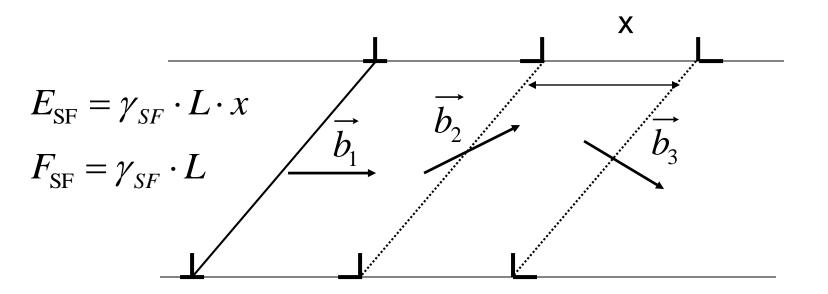


Stacking faults in fcc

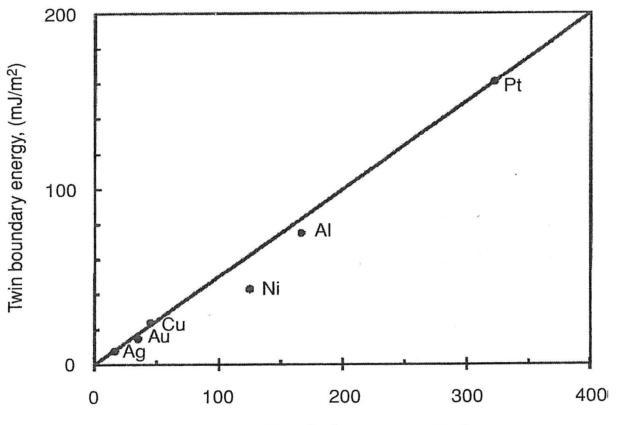
Table 9.2. Stacking fault energies of several fcc metals

Ag	AI	Au	Cu	Ni	Pd	Pt	Rh	lr
16	166	32	45	125	180	322	750	300 mJ/m ² .

Source From listing in J. P. Hirth and J. Lothe, *Theory of Dislocations*, Wiley, (1982).



Stacking faults energy



Stacking fault energy, mJ/m²

Figure 9.24. The relationship of stacking fault energy and twin boundary energy. The line represents $\gamma_{\text{stacking fault}} = 2\gamma_{\text{twin}}$.

References:

 A. Kelly, G.W. Groves and P. Kidd, "Crystallography and crystal defects", revised edition, 2000, John Wiley & Sons Ltd., England.
 G. Gottstein, "Physical Foundations of Materials Science", 2004, Springer Verlag, Heidelberg.