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Surface Fractography

Figure 17.1. Typical clamshell markings on a
fatigue fracture surface of a shaft. The frac-
ture started at the left side of the bar and
progressed to the right, where final failure
occurred in a single cycle. Courtesy of W. H.
Durrant.

Figure 17.2. SEM picture of fatigue striations on a
fracture surface of type 304 stainless steel. From
Metals Handbook, v. 9, 8th ed., ASM (1974).



Fatigue fracture surface
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Figure 17.4. Sketch showing how intrusions
Figure 17.3. Intrusions and extrusions at the surface and extrusions can develop if slip occurs

formed by cyclic deformation. These correspond to per- on different planes during the tension and
sistent slip bands beneath the surface. From A. Cottrell . . .
compression portions of the loading.

and D. Hull, Proc. Roy. Soc. (London), v. A242 (1957).



Characteristics of fatigue fracture

Fatigue 1s defined as a
degradation of mechanical
properties leading to failure
of a material or a component
under cyclic loading
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service failures of metallic
components that undergo
movement of one form or
another can be attributed to
fatigue.



Stress

Nomenclature of cyclic loading
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S-N curves
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Figure 17.6. The S-N curve for annealed
4340 steel. Typically, the break in the
curve for a material with a fatigue limit
occurs at about 10° cycles. The points with
arrows are for tests stopped before failure.

106
N, cycles to failure

10°



Stress, MPa

S-N curves
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Figure 17.7. The S-N curve for an alu-
minum alloy 7075 T-6. Note that there is
no true fatigue limit.



S-N curves
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Ny, Cycles to Failure

» Traditionally, the behavior of a material under fatigue 1s described by
the S-N (0-N) curves, where S (0) 1s the stress and N 1s the number

of cycles to failure. The S-N —curve 1s called a Woehler curve.



Fatigue testing, S-N curves

The greater the number of
cycles in the loading history,
the smaller the stress that
the material can withstand
without failure.
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Figure 12-3 Typical fatigue curves for ferrous and nonferrous metals. [Dieter]
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Determination for Fatigue Crack
Growth
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da/dN, mm/cycle

Fatigue Crack Growth
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da/dN (log scale)

Fatigue Crack Growth
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Determination for
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Fatigue crack growth rate testing
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Mechanisms of crack nucleation



Fatigue crack growth

Three stages of crack
growth, I, IT and III.

Stage I: transition to a
finite crack growth rate
from no propagation
below a threshold value of
AK.

Stage II: “power law”
dependence of crack
growth rate on AK.

Stage III: acceleration of
growth rate with AK,
approaching catastrophic
fracture.
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Fatigue crack stages

Stage 1 g gJ %

Figure 1215 W. A, Woed's concept of microdeformation leading 10 formation of fatigue crack. (a)
Static deformation; (b) fatigue deformation leading to ssrface notch (intruion); () fatgue deforma-
tiom leading to slip-band extrasion.

Figure 12:17 Plastic blunting peo-
e coss for grosih of stage H fangue

777N ceack. (From €. Laird, ASTM Spec.

Tech. Pull. 415, p. 136, 197}

,,,,,,,,,,,,,,,,,



Fatigue crack stages
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Fatigue Crack Propagation

e Crack Nucleation ® stress intensification at crack tip.

» Stress intensity ® crack propagation (growth);
- stage I growth on shear planes (45°),
strong influence of microstructure
- stage II growth normal to tensile load (90°)
weak influence of microstructure.

» Crack propagation ® catastrophic, or ductile failure at crack
length dependent on boundary conditions, fracture
toughness.



Fatigue Crack Nucleation

Flaws, cracks, voids can all act as crack nucleation sites,
especially at the surface.

Therefore, smooth surfaces increase the time to nucleation;
notches, stress risers decrease fatigue life.

Dislocation activity (slip) can also nucleate fatigue cracks.



Dislocation Slip mmp Crack Nucleation

 Dislocation slip -> tendency to localize slip in bands.

 Persistent Slip Bands (PSB’s) characteristic of cyclic
strains.

» Slip Bands -> extrusion at free surface.
 Extrusions -> intrusions and crack nucleation.



