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Learning Objectives

• Study changes in length of axially loaded members based on a 
force-displacement relation.

• Find support reactions in statically indeterminate bars acted on by 
concentrated and distributed axial forces.

• Find changes in lengths of bars due to temperature, misfit, and 
pre-strain effects.

• Find both normal and shear stresses on inclined section at points 
of interest on axially loaded bars.

• Study the effects of holes through axially loaded bars that cause 
localized stress concentrations.

• Study selected advanced topics such as strain energy, impact, 
fatigue, and nonlinear behavior.
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Coiled Springs

• Tension– load acts away; spring elongates

• Compression– load acts towards; spring shortens

• Linearly Elastic Equations

Load: Elongation:

Stiffness: Flexibility:
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Prismatic Bars
• Requirement #1: Straight longitudinal axis

• Requirement #2: Constant cross section

• Geometry can vary (see image)

• Requirement #3: Linearly elastic

• Force-Displacement Relation
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Prismatic Bars (cont.)

• Deformation Sign Convention

• Elongation: Positive (+)

• Shortening: Negative (-)

• Stiffness:

• Flexibility:
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Cables
• Tension only (cannot resist compression)

• δ cable > δ prismatic-bar for the same load, material, and cross-

section.

• Modulus of elasticity for a cable < modulus of elasticity of the 
material.

• In analysis, use the cable’s effective modulus and not for the 
material.
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Bars with Intermediate Axial Loads
• Step 1: Identify segments (ex: AB, BC, and CD as 1, 2, 

and 3).

• Step 2: Determine the internal axial forces N1, N2, and N3.

• Make a sectional cut at each segment and evaluate FBD.

• Step 3: Determine elongation for each segment.

• Step 4: Add elongation vales for overall elongation.
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Bars Consisting of Prismastic
Segments

• Analysis follows the same procedure.

• However, EA are no longer constants.

• General Elongation Equation
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Bars with Continuously Varying 
Loads or Dimensions

• Condition #1: Continuously varying cross-sectional area A.

• Condition #2: Continuously varying axial force N.

• Goal: Determine the elongation of a differential element of the bar and integrate 
over the length of the bar.

• Limitations: Must be linearly elastic with any taper angle being small.

9

0 0

( )

( )

L L
N x dx

d
EA x

   



Changes in Lengths Under 
Nonuniform Conditions
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Overall FBD

Schematic

Axial Force Diagram

Axial Displacement Diagram

Graphical display of the
internal axial force over

the length of the bar

Graphical display of the
Axial displacement over

the length of the bar



AFD to ADD Plotting Guidelines

• The slope at any point on the 
ADD is equal to the originate 
on the AFD at that same point 
divided by the bar’s axial 
rigidity EA at the same 
location.

• The change in axial 
displacement between any two 
points along a bar is equal to 
the area under the axial force 
diagram between those same 
two points divided by the bar’s 
axial rigidity EA over that same 
interval.
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Statically Determinate

• Reactions and internal forces can be found through 
FBD and equilibrium equations.

Statically Indeterminate

• More unknowns than the number of equations 
provided through FBD and equilibrium analysis alone. 
As such, more equations are needed.

Equation of Compatibility

Statically Indeterminate Structures
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Statically Indeterminate Structures

Boundary condition:

Solving for the displacements:

Equation of compatibility:

Solving for the reactions:
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Thermal Effects
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• Thermal Strain:

• Coefficient of Thermal Expansion: α

• Units: Reciprocal of the temperature 
change

• Sign Convention:

• Expansion: Positive (+)

• Contraction: Negative (-)

• Thermal Stress:

• Temperature-Displacement Relation:
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Misfits and Pre-Strains

• Misfit: Members in structure fit incorrectly due to their improper 
lengths.

• Pre-Strain: Strains produced in the member due to the misfit.

• Pre-Stressed: The stresses which accompanies the strains in 
misfits.
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Statically 
Determinate

Misfits will not produce 
strains or stresses, 

though a small angle 
will be produced with 

the horizontal.

Statically 
Indeterminate

Pre-strains will exist in 
all the members and the 

structure will be pre-
stressed even with no 

external loads.



Bolts and Turnbuckles

• Bolts and turnbuckles allows one to 
change the length of a member

• Bolt Elongation:

• n = number of revolutions

• p = pitch of the threads

• Turnbuckle Elongation:
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Stresses on Inclined Sections
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Stresses on Inclined Sections 
(cont.)
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Stresses on Inclined Sections 
(cont.)
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Stresses on Inclined Sections 
(cont.)
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• Maximum Normal Stress

• Occurs at θ = 0°

• Maximum Shear Stress

• Occurs at θ = ± 45°
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Strain Energy

21

• Work– the area below the load-
displacement curve

• Strain Energy– the energy absorbed 
by the bar during loading

• Units:   SI → J, N∙m IP →  ft-lb, 

ft-kips, in-lb, in-kips
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Strain Energy (cont.)
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Linearly Elastic Behavior:
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Strain Energy (cont.)
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Segmented Bars
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Maximum Elongation of the Bar
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• From conservation of energy, one equates 
potential energy lost by a falling mass to the 
maximum strain energy acquired by the bar:
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Maximum Stress in the Bar
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• From the maximum elongation, the stress 
distribution is assumed to be uniform throughout 
the bar’s length. Therefore, the force-
displacement relation is applied.
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Repeated Loading and Fatigue
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Types of Repeated Loads

• Fatigue failure will result due to repeated loading.

• Cracks form at a stress concentration.

• Endurance curves (S-N diagrams) plot failure stress 
(S) against the number of cycles (N) to failure.

• Fatigue limit is the value at which lower stresses will 
not produce a fatigue failure.

Endurance Curve



Saint-Venant’s Principle
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• A concentrated load produces a uniform 
distribution of stress within the bar at a 
distance equivalent to the width or diameter 
of the same bar.

• This principle allows one to apply standard 
stress formulas at cross sections a sufficient 
distance away from the source of the load 
concentration.



Stress Concentration Factors
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• Maximum stress occurs that the edges of a hole

• May be significantly larger than the nominal stress

• Stress-Concentration Factor K

• K factor is graphed for various geometries
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Stress Concentrations
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Flat Bar with Circular Holes Flat Bar with Shoulder Fillets



Nonlinear Behavior
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• Nonlinear behavior occurs beyond the 
proportional limit.

• Idealized stress-strain curves are 
utilized to simplify the analysis of 
nonlinear behavior.

• Figure A: Aluminum Approximation

• Figure B: Single Mathematical Expression

• Figure C: Structural Steel Approximation

• Figure D: Strain Hardening Approximation



Elastoplastic Analysis
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• Elastoplastic material initially has a 
linearly elastic behavior until the 
onset of yielding, at which point in 
time the strain increases at a 
constant stress.

• This idealized behavior effectively 
approximates structural steels.

• Analysis for statically indeterminate 
structures is more complicated, 
separating the analysis into two 
separate: before and after yielding



Summary
• Principal Objective– Analyze axially loaded members within 

structures

• Force Displacement Relationship:

• Stiffness: Flexibility:

• Cables are tension-only elements and effective elastic modulus 
should be used.

• Segmented Members: Non-Prismatic Bars:
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Summary (cont.)

• Compatibility Equations:

• Thermal Effects:

• Misfits and Pre-Strains induce Pre-Stresses in statically 
indeterminate bars.

• Max Normal Stress: Max Shear Stress:

• Stress Concentration Factors are used to find max stresses at 
discontinuities.
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