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Chapter 8. Transmission electron
microscopy-based techniques




Construction of Reciprocal lattice
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Example of Reciprocal lattice
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Laue diffraction in Reciprocal lattice
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Rotation of Reciprocal lattice
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Reciprocal lattice in TEM
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High-resolution electron microscopy

determine the atomistic
structure and interfaces

Drawback:
- complicated operations
- imaging low-index lattice
planes (spatial
$22 resolution=0.15nm )
% difficult sample
/ preparations and very thin
% samples
—% - complicated interpretation

HREM photograph of a 17°/(100) grain boundary in gold in which the interfacial structure can
be resolved. (Courtesy of W. Wunderlich.)



Selected area diffraction patterns

Al with a <110> zone axis

Characteristic diffraction from
single crystal yields a regular
arrangement of individual
diffraction spots.



Formation of diffraction spots I
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Formation of diffraction spots II
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SAD diffraction spots in TEM
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Schematic diagrams showing the formation of SAD patterns. (a) Formation of diffraction spots.
(Courtesy of S. Zaefferer.) (b) Primary beam as a zone axis for several diffracting planes. (¢
Indexed diffraction pattern of a [101] zone axis (see Figure 8.2).



Formation of SAD ring patterns in
polycrystalline
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(a) Schematic illustration of formation of SAD ring patterns in polycry stalline assemblies
(b) SAD diffraction pattern of evaporated aluminum with random texture. (¢) SAD diffraction

pattern of cold-rolled aluminum with strong texture. (Courtesy of H. Weiland.)
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Formation of SAD pole figures in TEM
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(@) Formation of SAD pole figures in a TEM; (b) and (c) coverage of the pole figure as the angle

o is gradually increased.



Kikuchi pattern in TEM

In the Kikuchi patterns an electron

beam entering a crystalline is

subjected to elastic or diffuse

diffraction.

The elastic diffraction gives rise to

distinct diffraction spots in the

back focal planes (SAD).

In diffuse diffraction electrons

arrive the atomic planes in all

@ ) directions and these electrons
undergo elastic (Bragg) scattering.

Simulated diffraction patterns for a [100] axis showing both SAD spots and Kikuchi lines for
(a) untilted, that is, exact [100] orientation and (b) 2° tilted orientation. These patterns show that
Kikuchi hines have much greater sensitivity to crystal orientation than SAD spots (simulation
program TOCA by Zaefferer, 2002).



Formation of Kikuchi patterns in TEM
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In the Kikuchi patterns an
electron beam entering a
crystalline 1s subjected to elastic
or diffuse diffraction.

The elastic diffraction gives rise
to distinct diffraction spots in
the back focal planes (SAD).

In diffuse diffraction electrons
arrive the atomic planes in all
directions and these electrons
undergo elastic (Bragg)
scattering.

Formation of Kikuchi patterns in a TEM for (a) parallel beam, thick sample and (b) convergent

beam, thin sample.



SAD vs. CBED
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Lens Aberration limits Array of discs in diffraction plane,
resolution to ~1 pm. c.f. spots in SAD.

From J. Mansfield (U. Michigan)



CBED
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Figure 20.1. Ray diagram showing CBED pattern formation. A con-
vergent beam at the specimen results in the formation of disks in the BFP

of the objective lens.



SAD vs. CBED patterns

Figure 20.2. (A) SAD pattern from [111) Si showing the first few o
ders of diffraction spots but no Kikuchi lines. (B) CBED pattern from
[111] Si showing dynamical contrast within the disks as well as Kikochi
and other lines



Micro-diffraction patterns

With increasing convergence of the incident electron beam, the
diffracted disks widen, with their diameter being controlled by the
convergence angle. This give rise to CBED also referred to as Kossel-
Moellenstedt diffraction. CBED 1s not directly used for microtexture
measurements.

Microdiffraction patterns from [111]-oriented crystals obtained with increasing convergence of the electron beam. (a) Kikuchi lines and HOLZ lines in
the zero-order Laue zone (ZOLZ) (Nimonic PE16). (b) Widened ZOLZ disks with intensity variations plus first-order Laue zone (FOLZ) lines (silicon).
(Courtesy of K. Tsuda)) (¢) Central diffraction spot with HOLZ lines (simulated), (Courtesy of R, Holmestad.)



Micro-diffraction patterns
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aperture size causes the CBED pattern to change from one in which indi-

Kossel- Kossel vidual disks are resolved to one in which all the disks overlap. In (D)~(F)
Mollenstedt pattern you can see what happens to experimental patterns on the TEM screen as
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you select larger C2 apertures.



